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ABSTRACT 

A rigorous mathematical analysis is presented for the following 

types of electrode process in electrolysis at constant current in unstirred 

solution:  1. Cathodic process followed by re-oxidation resulting from 

reversal of the current through the cell, 2. Reduction of a two-component 

system,  3- Stepwise reduction of a «4.n?le substance.  The concentrations 

of the substances involved in the electrode process are derived by applying 

the method of integral transforms (Fourier and Laplace), and the corres- 

ponding transition times are calculated.  Equations of the potential-time 

curves are also derived lor cases I and III 

In case I, the transition time for the re-oxidation process is one- 

third of the transition time for the preceding cathodic process.  The 

analysis of the potential-time curve enables one to make a complete study 

of the kinetics of the electrode process when this process involves 

cathodic and anodic over-voltages exceeding C.l volt-  calculation of the 

rate constant at zero potential, determination of the transfer coefficient, 

calculation of the free energies of activation for the forward and back- 

ward electrochemical reaction, and computation of the standard potential 

for the couple involved. 

In case II, the transition time for the substance which is the more 

difficult to reduce, depends not only on the bulk concentration of this 

substance, but also on the concentration of the substance beinq reduced 

at less cathodic potentials  Quantitative relationships between the 

transition times for the two steps are derived. 
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In case III, tne ratio of the transition time,    XI z /   XI \    is not 

proportional to the ratio of the nivmber of electrons involved in the 

corresponding electrode processes.    Thus     7? /    ft    • 3   for n2 / nt  - 1; 

Xz I    7>    " 8    for n2 / ni   " 2,  etc. 

Experimental results for various electrode processes confirm the 

theoretical treatments of the above three cases. 

INTRODUCTION 

There have been several attempts in the recent years to apply the 

polarographic method to the study of electrode processes, and several 

1 
contributions in this field have been made in this laboratory as well as 

2 
by other investigators . Interesting results have been reported in this 

1 P. Delahay, J. Am. Chem. Soc. 22. 4944 (195D; 2k*  3497, 3506 (1952); 

25., 0000 (1953); P. Delahay and J.E. Strassner, ibid.. 7J, 5219 (1951); 

2£, 893 (1952); P. Delahay and T.J. Adams, ib^d., Jk>  U37 (1952); P. 

Delahay and G.L. Stiehl, 24, 3500 (1952); J.E. Strassner and P. Delahay, 

2k,  6232 (1952). 

2 
J. Koutecky and R. Brdicka, Collection Csechoslov. Chem. Ccmauns.. 12 

337 (1947); H. Eyring, L. Marker, and T.C. Kwoh, J. Phya, Colloid Chem,, 

£2, 187 (1949); N. Tanaka and R. Tamamushi, Bull. Chem. Soc. Japan. 22, 

187 (1949); 22, 227 (1949); 2J, 110 (1950); M.G. Evans and N. S. Hush, 

J. Chlm. Phvs.. 42, C 159 (1952); A. Tockstein, Collection Ccechoslov. 

Chem. Commons.. ^6, 101 (1951); J. Koutecky, Sbomjk Metjnarod. Polaro*. 

Sjetdu Prace. 1st Cong. 19?!. Part I, pp. 826-838. For a survey and 
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additional references, see I.M. Kolthoff and J.J. Lingane, "Polarography", 

2 Bd., Interscience Publishers, New York, N. T., 1952, pp. 268-294. 

respect, but the main drawback of the polarographic method in such studies 

is the approximate nature of the quantitative treatment of the current 

observed with the dropping mercury electrode.  It is generally feasible to 

give a rigorous solution of the boundary value problem being studied for 

the case of semi-infinite linear diffusion, but the rigorous derivation 

for the corresponding problem for the expanding sphere generally involves 

very serious difficulties.  It is then necessary to adapt the solution for 

linear diffusion to the case of the dropping mercury electrode by a rather 

approximate method. Such approximations are avoided in transitory voltau- 

metry in which the solution for linear diffusion is applicable with good 

accuracy. Hcwever, the mathematical treatment of currents in transitory 

voltaanetry, which is relatively straightforward in simple cases involving 

3 
pure diffusion , becomes very involved when there is partial kinetic 

A 
control . Electrolysis at constant current in unstirred solution does not 

3 
A. Sevcik, Collection Czechoslov. Chem. Comauns., 1^, 349 (1948); 

J.E.B. Randies, Trans. Faraday Soc. U±,   327 (1948); T. Bertins and 

P. Delahay, J. Am. Chem. Soc.. 2$, 555 (1953). 

* F. Delahay, J. Am. Chem. Soc. 7J, 1190 (1953). 

have the disadvantages of the above methods:  the experimental conditions 

actually correspond to the case of semi-infinite linear diffusion, and it 

is possible to solve rigorously the various bo'indary value problems. This 

5 6 
method is ratner old , but it was revived only recently .  A first paper 

J 
*»#*• *B* •- - • 
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7 
from this Laboratory dealt with general principle* and *ith the treatment 

5 H.P. Weber, Wied. Ann.. J, 536 (1879); H.J.S. Sand, Phil. Mag.. 1, 2*5 

(1901); Z. Xaraoglanoff, Z. Blectrochem.. 12, 5 (1906). 

6 A. Rius, J. Llopis, and S. Polo, Anales Fla. y Quim.. (Madrid). j£,  1029 

(1949); L. Gierst and A. Juliard, "Proceeding of the 2nd Meeting of the 

International Committee of Electrochnucil Thermodynamics and Kinetics", 

1950, Taaburini, MiIan. pp. 117 and 279. 

7 
P. Delahay and T. Berlins, J. Am. Chem. Soc. 21*  0000 (1953). 

of electrode processes in which the electrochemical reaction is preceded by 

a chemical transformation. In the present paper we discuss various pro- 

cesses involving two consecutive electrochemical reactions. 

CASE I - CATHODIC PROCESS FOLLOWED BY RE-OXIDATICN 

RESULTING FROM REVERSAL OF CURRENT 

INITIAL AND BOUNDARY CONDITIONS. 

Consider the electrode process in which a substance 0 is being reduced 

to a substance R. The electrolysis is carried out at constant current in 

an unstirred solution, and it is assumed that the direction of current 

through the cell is reversed at some stage of the electrolysis. This 

reversal of current results in the re-oxidation of substance R which had 

been produced during the preceding cathodic process. The potential-time 

curves obtained in this type of electrolysis can be applied to the quanti- 

tative interpretation of electrochemical processes, and it is therefore cf 

interest to develop the mathematical analysis of this type of electrolysis. 

»»mv ****«—. *.'-- 
J 
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This is done below for experimental conditions corresponding to semi- 

infinite linear diffusion. Convection or migration effects will be assumed 

to be negligible, it being understood that the electrolysis is carried out 

in presence of a large excess of supporting electrolyte. 

In the course of the cathodic process leading to the formation of 

substance R, the concentration of this substance varies with the time t 

elapsed since the beginning of the electrolysis and with the distance x 

from the electrode. This concentration is, according to Karao^lanoff 

'k    r     * 

with 

* «  7TT- (*•) 

The notations in equations (1) and (2) are as follows:  iQ is the 

density of the current through the electrolytic cell; n the number of 

electrons in the reduction of substance 0; F the faraday; D the diffusion 
n 

coefficient of substance R; and "erfc" is the complement of the error 

function. Equation (1) was written for the transition times f corres- 
8 

ponding to the redaction of substance 0,  but is valid for any value of 

t smaller than the transition time Z.    • 

g 
For a detailed discussion of the properties of transition time see ref. 7; 

f corresponds to the time of electrolysis at which the concentration of 

substance 0 at the electrode surface becomes equal to zero. 

J 
i -.*_ i*asu . .-.. 
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At time ~C   the current through the cell is reversed, and consequently 

substance R is now re-oxidized at constant current. This anodic process 

i 

proceeds at a current density l0 which may not necessarily be the same as. 

the density i<> during the cathodic process. Since the current is constant, 

the flux at the electrode surface is constant and one can write the following 

condition 

)*(*,*') 

1. 
=   A 

J X •=. O 

in which X' i s defined as follows 

./ 

A' = 
-71 f D, 

(') 

(*) 

i 
Note that the concentration C (x,t   .  in equation (3)  is written as a 

R 
function of the time t'   ,  which is :   ^.ated to the time t elapsed since 

the beginning of the reduction of substance 0 by the following relationship: 

f. t- 
(') 

This new scale of time is introduced for the sake of simplicity (see 

below). 

The boundary value problem is now completely stated. Equation (1) 

which gives the distribution of substance R at time t • 0, is th% initial 

condition for the present problem; formula (3) expresses the boundary 

condition.  The concentration of substance R will be derived below by 

solving the differential equation expressing Pick's second law. 

.>•<*»• WWt 
J 
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DERIVATION OF THE CONCENTRATION C_(x.t'j. 
8 

The function    C-(x,t)    willb'j derived by applying the Fourier cosine 
9 

transform which is defined by the following relationship 

'    I.N. Sneddon,  "Fourier Transforms",    McGraw-Hill, New York, N.T.,  1951, 

p.  5. 

in which p is the variable resulting from the transformation and z is the 

variable with respect to which the transform is taken.    By this transform, 

the partial differential equation expressing Fick's second law is trans- 

formed into an ordinary differential equation.    From (6) one deduces 

kk) * r ?*(»>*),,, i* d* = 
%* fJC 

Cot h 

as one can readily ascertain by two cor>«ecutive integrations by parts and 

by noting that the concentration    CR(x,t')    and the derivative 

JC (x,t') /   6) x approach sero when x becomes infinite.    The first term 

on the right-hand of  (7) is known from condition  (3) and this is why the 

cosine    transform and not the sine transform is used here.    The transform 

of the equation expressing Fick's second law is: 

*~% Or- 

, 

J 



>k 
TC v' - tfi (A *) 

(') 

The solution of this ordinary differential equation is immediate: 

F \f O) 
The integration constant M in (9) is determined by satisfying the 

transform of the initial condition (1). This transform is obtained by 

combining (1) and (6) and by calculating the resulting integrals by parts. 

After several consecutive integrations by parts one obtains: 

$M'd ) 

e 

f 
l-rf(-*k*f) (») 

Introducing now Ca(p,0) from (10) in equation (9), one readily calcu- 

lates M, and finally obtains the following transform of the solution: 

£3b 

% a-e) -a f 
-(**** ***)£ 

J 
*• ••-.•***' *=  -* ^A^ <&&MMPMflb- 
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/ - <jy> - &Rt h Co 
The three terms on the right-hand of equation (11) are of the saae 

form as the transform of the initial condition (10/, and consequently the 

function Cg(x,t) is the sum of three groups of terms haying the same form 

as the initial condition (1). Thus: . 

C*(*>*)-*9 
** (* • *') txh 

X* 

L  *^*e)\ 

- Gx.   trtA. 7» 

-^*0(¥)V(- *&*? 

+ /e */jx y^ cc~ 
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Tha correctness of the above derivation was established by verifying 

that the solution (12) satisfies the differential equation expressing Ficx's 

second law. The initial and boundary conditions are also satisfied. 

As an example, the variations of the function CD(x,t) with x and for 

given tines of electrolysis are shown in Fig. 1. This diagram was constructed 

for the following data: i0 - i0 • 10  amp.cm. ' , D - D_ - 10~5 cm?sec7', 
-3       _3 

n - 1 , C * 5 x 10  mole.cm.  . Note that the concentration vs. x curves 

exhibit a maximum for t1 y   0 , and that the slope of the tangent to the 

curve at x - 0 is constant, as it should in view of condition (3). Further- 

more, the concentration at a sufficient distance from the electrode increases 

during the re-oxidation process; this is to be expected since substance R 

diffuses toward the region of the solution in which its concentration is 

lowered. Of course, for large values of t' , C (x,t') ultimately approaches 
R 

sero. 

TRANSITION TIME Z    . 

Because the concentrations of substances 0 and R at the electrode sur- 

face vary during the re-oxidation process, the corresponding electrode 

potential varies. At the transition time  X.    >  the concentration of 

substance R is by definition equal to zero, and consequently the electrode 

potential becomes infinite.  Actually, this merely implies that at times , 

t' y    "X, the oxidation of substance R proceeds at a rate which corres- 

ponds to a current of density smaller than i0 ; as a result, the potential 

moves toward more anodic values until another anodic process (oxidation of 

the solvent, oxidation of the electrode) occurs. The transition time ~X 

is therefore characterised by a sudden variation of potential as shown in 

Fig. 2 (this diagram is discussed below). 
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The value of    "C    is  readily deduced from equation  (12) by introducing 

the condition    CR(0,t') - 0.    This leads to the following relationship 

between the transition time    "X.     for the reduction process 0  *    R and 

the transition tine   7T    for the re-oxidation process 

(e - A'/- e* l J 
/ 

The quantities ^ and  A in this equation are defined by equations (2) 

and (/»)» respectively. If the current densities i0 and i0 are equal, equation 

(13) takes the remarkably siaple form: 

Bquatjon (14) shows that the transition tine for the re-oxidation 

process is equal to one third of the transition time for the preceding 

cathodjc process, the current density being the sane in both processes. 

This conclusion was verified experimentally for a few electrode processes, 

and the results are summarized in Table I. It is seen from this table that 

values of the ratio "C / "Z   fluctuates around 3 i    the average value of 

the 16 listed values is 3*02 whereas the theoretical value is 3* The rela- 

tively large errors (up to 6-7 per cent) are to be expected because of 

the use of a cathode-ray oscillograph as recorder (see below): the length 

on the trace corresponding to the time  C  was less than 1 inch, and con- 

sequently the accuracy on t was poor. 

Two examples of potential-tine curves are shown in Fig. 2. Note that 

the current was reversed very slightly before the transition time was 

reached. This procedure is justified because equation (1) and the above 

J 
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treatment are valid when the reversal of current occurs at any tiae t which 

is smaller or equal to the transition time "C .  Equation (1), however, 

does not hold for values of t larger than t , and consequently it is 

advisable in the experimental verification to reverse the current for t ^ "£, 

P0T8KHAL-TIME CURVES. 

The method involving the reversal of the current would be of little 

practical value if it were not for the possibility of studying the kinetics 

of electrochemical reactions by the present method. The characteristics of 

potential-time curves which are useful in such studies will now be established. 

Case in which there is electrochemical equilibrium at the electrode. 

If electrochemical equilibrium is achieved at the electrode, the potential 

is given by the Nernst equation, and the application of this equation 

requires the knowledge of the functions CD(0,t ) and C (0,t ). The 

former concentration is given by equation (12) in which x is made equal to 

zero; the concentration Co(0,t') can be derived by following exactly the 

same method as the one which led to equation (12). There is no need for 

repeating the derivation here, and the equation for the potential-time 

curve can be written directly. Thus: 

A> ft * 0 f-      ./I^MXA (-¥)' ML e-»L-"g-J.*"nc-;     M 

• 
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The notations in equation (15) are as follows: E* is the standard 

10 
potential for the couple 0-R  ; f0 and f are the activity coefficients 

0 If an amalgam electrode is involved, E* is the standard potential for 

the amalgam. 

of substances 0 and R ; D. is the diffusion coefficient of substance 0 ; 

C* is the bulk concentration of substance 0 and the quantity  X is defined 

as follows: 

X = —^_ (4) 

Equation (15) can be modified by recalling that the transition time 

is related to the concentration C* by the equation 

<£• C _ * A (JtE.j* (7) 
By combining (15) and (17) one finally has: 

with 

E,L=E\JgA 6 4 
r KF -/•*'£' 

 / 

It was previously shown that the potential Ej /2 for a simple reduction 

7 
or oxidation process is observed at a time equal to 1/4 X       ,  and the 
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potential B|/a for the reduction of substance 0 can readily be determined 

experimentally. If electrochemical equilibrium is achieved at the electrode, 

the potential E|/2 for the re-oxidation process is observed at a tiae t' for 

which the logarithm on the right-hand of (16) is equal to zero. This con- 

dition leads to second degree equation in t1 whose solution is: 

Summarising. In case of electrochemical reversibility. foe potential 

at tiae Ti  A for the cathodlc process should be equ»l to the potential 

at the tiae t' given by equation (20). This procedure can be used to 

determine whether or not electrochemical equilibrium is achieved at the 

electrode. This method, however, leads to erroneous conclusions when the 

electrochemical reaction is followed by a chemical transformation. In 

that case the concentrations of substance R might be greatly decreased, 
11 

and the potential-time curve is shifted accordingly . 

We have also developed the treatment of this case, and this matter 

will be taken op in a subsequent publication; for an example in polarogrephy, 

see L.I. Smith, I.M. Kolthoff, S. Wawzonek and P.M. Ruoff, J. Amer. Chem. 

Soc. &, 1018 (19U). 

Irreversible electrochemical reaction. We consider the case in which the 

cathodlc and anodic overvoltages are large enough at the current density 

i0 to allow one to neglect the effect of the backward process in writing 

the equations for the rate of the electrochemical reaction. This condition 

is verified in the great majority of irreversible electrode processes, 
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since the above simplification is justified when the overvoltages (cathodic 

and anodic) exceed, say, 0.1 rolt. 

If one assumes that the electrochemical reaction ia of the first order 

one has: 

. / 

71 F ' hit **(>>*) (*•) 

I 

in which k.   n    is rate constant  (heterogeneous) for the re-oxidation 

process.    This rate constant is an exponential function of the electrode 

potential E of the form 

kt o  -  k» »   ex 
%X %l t (i-<x) 72 FE 

RT W 
in which r* .  is the value of the constant at E • 0 ITS. the normal 

r,h — 

hydrogen electrode), and o( is the transfer coefficient for the cathodic 

process 0  > R. By combining equation (12) (for x - 0) , (21) and 

(22) , one obtains the following potential-time characteristic: 

E = RT 6   Jkj* RT 
(>-«.) nF       -ik^^    (i-<*)nF 

L (*.t'f- zt/A 

(*>) 
According to equation (23) a plot of the logarithm of the quantity 

/( £• t')    - 2 t' '/2J  versus E should yield a straight line whose recip- 

rocal slope is (RT) / (1 - oC ) n F ; the value of (1 - o^ ) can thus 

i 
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be determined from the potential-time curve for the re-oxidation process. 

Since ^X can also be calculated from the experimental potential-time 

curve for the catnodic process , it is possible to verify by the present 

method that the sum &  • (1 -°C j is indeed equal to unity. If there 

are kinetic complications (consecutive electrochemical reactions, dismu- 

tation, etc.) this sum will generally be different from unity, and such 

complications can therefore be detected. The rate constant k°   is 

calculated from the potential t' - 0 (see equation (23)), and the corres- 

ponding rate constant k* .  for the cathodic process is determined from 
7 

the potential-time curve for the cathodic process . A complete study of 

the kinetics of the electrochemical reaction can thus be made.  Finally, 

the free energies of activation corresponding to k*   and k*   can be 
f,h     b,h 

evaluated by application of the absolute rate theory, and consequently the 

standard free energy change for the electrode process can be determined. 

Standard potentials for markedly irreversible processes can thus be 

evaluated by the present method. 

The preceding discussion dealt with re-oxidation processes, and it is 

a trivial matter to transpose the treatment to the opposite case in which an 

anodic process is followed by cathodic reduction. 

CASE II - TWO CCN3ECUTIVE ELECTROCHEMICAL REACTIONS 

IN70LVING DIFFERENT SUBSTANCES 

INITIAL AND BOUNDARY CONDITIONS. 

We consider the case in which two substances C- and 02 are reduced 

at sufficiently different potentials to yield a potential-time curve 

exhibiting two distinct steps. The reduction products are Rt and R3 , 

J 
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1 

and the number of electrons m and n2 , respectively. It is also assumed 

that U\   is the substance *fcich is reduced at less cathodic potentials. 

The characteristics of the potential-time curve for the first step 

are not influenced by the presence of substance R2 in solution, and 

5 5 
consequently the simple treatment developed by Sand and by Karaoglanoff 

is applicable. This is not so, however, for the second step, and the 

quantitative treatment for this case will be developed here. As for 

Case I, it will be assumed that the experimental conditions correspond 

to seed-infinite linear diffusion, and that the effects of migration and 

convection are negligible. 

The concentration of substance 0, at the transition time  "J^ is 

equal to sero at the electrode surface, and this concentration remains 

equal to sero at the electrode proceeds. Substance 0|, however, con- 

tinues to diffuse toward the electrode at which it is immediately reduced. 

As a result* the current through the cell is the sum of two components 

corresponding to the reduction of substances 0j and 02, respectively. Thus: 

Co, (p. t')= O (») 

*A \^. 

JXmO 

^W) 
^ 

_   <*> 

JitO 

(zs) 
where the D's are the diffusion coefficients. Note that equation (24) 

and (25) are written in terms of the time t' defined by the condition 

t> -1 - r.. 
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I 

Th» initial conditions are: 

<*(*/")  =  cl (*) 
and 

In equations (26) and  (27), C" and C*  are the bulk concentrations of 

substances 0|  and 02, and     A   is defined by equation (16).    Equation (26) 

simply expresses that the concentration of substance 02 is constant before 

electrolysis.    Equation (27) gives the distribution of substance 0t   at 

the transition time      Ti   >  equation (27) was originally derived by Sand 

and by Karaoglanoff  . 

DEMVATIONJ0P__JCCJ   fx.tM   /   J x    for    x • 0. 

The procedure adopted in solving the boundary value stated by equations 

(24) to  (27)  is a« follows:    firstly,  the derivative        J  C      (x,t*) /Jx 

for x • 0    will be derived by solving the diffusion equation for conditions 

(2k) and  (27); the resulting value of      3 C      (x,t') /   3 *    for x - 0 

will be introduced in (25), and the function      Cn    («,t')    will then be 

derived by solving the diffusion equation for the resulting boundary 

condition and for the initial condition  (26).    We determined the derivative 

JPQ    (x,t') /   o x *or x " 0 by two methods, namely the Laplace and 
i 

Fourier transformations.    Beth methods yielded the same result and only 

the derivation based on the use of the Laplace transformation will be 

discussed here. 

J 
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By taking the Laplace transform of the diffusion equation with respect 

12    13 to tine one obtains the following ordinary differential equatior '       : 

15 
K.S. Carslaw and J.C. Jaeger, "Conduction of Heat in Solids", Oxford 

University Press, London, 194?, p.2A6. 

13 We use here the notations of R.V. Churchill, "Modern Operational Mathe- 

matics in Sigineering", McGraw-Hill, New fork, N.Y., 1944. 

where C0 (x,C) is defined by equation (27). The solution of this equation 
I 

is of the form 

cfrj.n*+[•(£) «]• "<f [(v-r-i*<>('<*) H 

I 
where M and N are integration constants and C (s,x)    is a particular p 

solution of equation (28). This particular solution is given by the 

U 
relationship 

H See ref. (9), p. 37, equation (94). 

SM-ihf*'1' 4m Wt (*> 
2T-   U   00 
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where i • (-1) / ; ~Q  is a positive constant;  Cp (p) is the Laplace 

transform of the function -Cn (x,0', / DQ  with respect to x (using p 

instead of s to aroid confusion with the previous transformation); and 

T*(p) is the symbolic formulation of equation (28) . In the present 

l* For a discussion of the D method see for example M. Morris end C.E. 

Brown, "Differential Equations", Prentice-Hall, New York, N. Y., 1946, p.75. 

case one has: 

The integral (30) in which f (p) is replaced by its value from 

(31) can be evaluated by applying the Faltung theorem for the Laplace 

transform .  Thus: 

16 
See ref.   (9), p.   30,  equation (69). 

¥*'*)•-foy(7)?(*'V)d7     (3Z) 
in which     y     is an auxiliary variable,  and the functions f(x) and g(x) 

are defined as follows:    f(x) -    -C  (x,0) / D-      and g(x)    is such that u, u, 
the function    1/    J    (p)     (see eq.(31))    is the Laplace transform of g(x). 

Hence17: 

17    See ref.  13, p. 296,  eq.(17). 

J 
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/(')• iftrfl Win 
•i* 

\ 

(35) 

In riew of equations  (32)   ,   (33)  ,  and the definition of the function 

f(x)  , the particular solution    C (s,x)    is 

C/>(<*)=- 

(\ <)* 

4im.k (k?H I 1 

'A   'A * 4*» 5 *LJL 

-'f(lM z A; «?• 
-J^^Tt /f £)*(-*) 7 

or in an abridged form 

£(<*> #~^ 
I. + 

AT ^ 
I --V*     .'A      A A'    tf 

'( 

ft) 

J 
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I 

It and I2 corresponding to the integrals of equation (3A). These integrals 

are evaluated in appendix I, and the complete solution of equation (28) is: 

2W d %   CL 

^(laVj-i^fax) 

•W J* ^{^hYH^-h) 

i 
with 

yrw* 
«*A> a 

«th X f 
**: 

?- 
A 
'A 

a« //4 ^l£ 
(*1) 

The integration constants M1  and N1  in equation  (37) are different 

from the constants M and N of equation  (29), because terms in exp(-qx) 

and exp(qx)  in the particular solution have been included in the first 

two terms on the right-hand of equation  (36).    Since the function 

CQ(x,t) is bounded for x from 0 to    Oo    ,  it follows that N'    -    0 in 

4 
r-    .<* **. - 
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equation (36). The other integrations constant M' i3 determined by 

expressing that the transform of the boundary conation (2*)  is fulfilled. 

Thus C   (0,s) - 0 , and 

A 1*\ H   =  -^'—rr   C^(S-\ *JL(-±-) 

It is the derivative     U 00    (x,t' ) /   c> x for x - 0    in 

(s>) 

which we 

are interested, and consequently we can directly differentiate C    (s,x) 

with regard to x and introduce the value x - 0 in the resulting equation. 

After regrouping terms and introducing the values of q and a from (37), 

one finally obtains: 

~> Co, (*, *) 

'x. - o 

A 
2b 

J_ 
0 "^-p^M^M 

•k 
&) 

The inverse transform of 1/s is simply 1 and •.he transform of the 
18 

second term between braces can be evaluated by the convolution    By 

18 
See ref.  13,  p.  36. 

1/2 ifi   • /2 
noting that the transform of 1/s is  1 /%   f       ,  and the 

transform of 

[iV*V^*V^ *"*•• * * 
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'     «/>(±t4)*f c 'A 

.. 

is 1 / /^(t1 *Zt)J I* 
, one has 

/ - 

A>, I       7C 

which upon integration yields: 

5 ^ fc 9 
^)^ }Z,:0 

*>! 

I 

dh 
% fh -' V/- 

w 

I 

Z        1Z \ K, t tj 
(ft) 

The result embodied in equation (41) was also derived by a different 

method (Fourier transform); furthermore, equation (41) is Terified for 

t' - 0 and for t' - ©o  . This establishes the correctness of the 

above treatment. 

Values of the ratio of the flux of 0t for t' - 0 and x - 0 to the 

flux for t' > 0 and x - 0 are plotted against t1 /^i  in Fig, 3. This 

diagram shows that the contribution of the reduction of substance C| to 

the total current is indeed very important. For example, at time t' - "C ,, 

the flux is still one-half of its initial value at time t' - 0. 

I DERIVATION CF THE FUNCTION CQ (O.tM. 

The boundary condition (25) can now be rewritten by introducing in 

it the value of   J C  (x,f) / ^ x for x - 0 from equation (41). 
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Thus 

3«kMJ 
?. 

A 
XsO %A* 

J !_   CVIC "dm. —I  i i 
(»*) 

A being defined by 
A« i/F M 

The probleo is to solve the diffusion equation for the initial con- 

dition (26) and the boundary condition (*»2) , and this will be done by 

applying the Laplace transformation. It is advantageous to introduce 

the function h(x,t') defined by 

*(*>*')-<*' \(^n    M 
By solving the transform of the diffusion equation one obtains (note 

that h(x,x) is bounded for x  > cP )  the solution 

£«*)=  ^-/["(-i)/V H 
in which the integration constant M is determined by satisfying the trans- 

form of the boundary condition (W). This transform is obtained by 

integration by parts, and the following result is obtained 

XiO 
< 

<+Myfa*?)H*) 
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After having determined M from (45) and (Lb),  one finally deduces the 

following transform of the function h(x,t') 

f( a,x) = 

A- 
%K a ̂ (W^lM'W 6 < K 

.%; 

(v) 
Since only the concentration of 02 at the electrode surface is 

needed,  the value x - 0 can be introduced in equation (47). The inverse 

transform of the resulting equation is again derived by applying the 

convolution. Thus, by noting that the inverse transform of 1/s is 1 , 

and the inverse transform of 

/ 

<f'/' /My [(*,*;*' 
is 1 /  [%{  t,     •    t')] 

i(o, f) - 

/* one has: 

A 
% **A* 

* 

ft •!)* 

(") 

The integral in equation (48) is inmediate, and after returning to 

the function C~ (0,t*) , one finally obtains the concentration of 02 at the 

electrode surface 
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^<K-zra <V'*/-*,* (V) 

This is the remarkably simple final result of the above long derivation. 

If the transition time "£ , is made equal to zero, i.e. if only substance 

02 is present in solution, equation (4*9) takes the form 

This is precisely the value derived by Sand . It is interesting to 

find that equation (J»9) for the consecutive reduction of two substances 

is of the same form as equation (50) for the reduction of a single sub- 

stance; the only difference between equations (C9) and (50) is that the 

square root of the time elapsed since the beginning of Electrolysis in 

equation (5C) is replaced by the difference f( Z\  *  t')'/2 - E",'/2] 

in equation (45)* 

TRANSITION TIME FOR THS SECOND STEP OF THE POTENTIAL-TIME CURVE. 

The transition time T.  2 f°
r tne second step of the potential-time 

curve is determined by the condition that the concentration of substance 

02 at the electrode surface be equal to zero. Hence, the right-hand member 

of (i»9) is equal to zero for t1 - £2. By solving the resulting equation 

in Z 2 on* deduces 
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* « 
-*     ./?-/* f+*p*r       C) 

with 

Equation (51) shows that the transition time Xjt _not only depends on the 

balk concentration of 01. but also on the bulk concentration of substance 

0t which Is reduced at less negative potentials*    This is understandable, 

since substance 0|  continues to be reduced while the reduction of substance 

02 proceeds.    The influence of the reduction of 02 can be evaluated by 

considering the following case:    m   - n2  ,    C!  - C*  ,    D      - Dn    .    By 
2 0,        u« 

recalling the value of the transition time   X. ,   for the first step 

' ^ 

M 
one concludes from equations (51) And (53) that the transition time X 2 i* 

tj, * 3 ^ (ft) 

The transition time     X z would have been equal to   X ,   , had substance 

0| not been present.    The Increase in transition time resulting from the 

presence of substance 0|  is therefore very pronounced. 

r> 
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Since CQ (0,t') is equal to sero for ti - TT2, it follows from 

equation (49) that the product i0 /"( T ,  •  r?)'/2 - ti'^J for 

given conditions of electrolysis, is independent of the current density 

io . In the case of the reduction of a single substance it is the product 

io  £ »''a which is independent of current density . Equation (2*9) also 

shows that the concentration C* is proportional to the quantity 

L C T I  • *T a)'/2 - t i'/2]  , end this property can be applied in 

analytical determinations. 

We aleo derired the equation of the second step of the potential- 

time curve, but the resulting equation does not lead to any interesting 

conclusion. 

The above treatment was verified experimentally for mixtures of 

cadmium and sine ions. The results summarised in Table II show that the 

product i0 [( "Ci • fa)'/2 - Ci1/2!  is indeed independent of 

the current density. The average values of this product are also pro- 

portional to the concentration of zinc ion: the ratios of concentrations 

are 2, 1, 0.75, and 0.30 whereas the corresponding ratios of the average 

values of the product i0 [ ( Ti • tj)'/? - Ci'/2]  are 2.06, 

1, 0.766, and 0.312.19 

19 
Note that the solutions of cadmium and sine ions were not standardised, 

and consequently the absolute concentrations of these substances are not 

known exactly* However, the various solutions were prepared by dilution 

of a single sine solution, and the ratios of sine ion concentrations are 

only affected by the errors resulting from dilution. 
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The experimental errors ere thoae one would expect for recording on a 

5 inch screen of a cathode-ray oscillograph. Finally, Table II shows that 

the experimental determination of sine ion in presence of a tenfold excess 

of cadmium leads to very uncertain results (solution I). This conclusion 

could easily be generalised. 

CASK III. STEPWISE REDUCTION OF A SINGLE SUBSTANCE 

The stepwise reduction of a substance 0 according to the equations 

R,+ nxt = Rz (rt) 

will now be treated for the case in which the substances 0 and Rt are 

reduced at sufficiently different potentials to yield a potential-time 

curve exhibiting two steps. As in the previous cases, the problem will 

be solved for conditions of semi-infinite diffusion, the effects of 

migration and convection being assumed to be negligible. 

The transition time ~€\  for reaction (55) can be calculated on the 

basis of the treatment developed by Sand , but this is not so for the 

transition time XT a corresponding to the second step. After the tran- 

sition time  £~ t , the concentration of substance 0 at the electrode 

surface is equal to sero, but this substance continues to diffuse toward 

the electrode where it is reduced directly to R2 in a process involving 

ni • n2 electrons. Furthermore, substance Rt which was produced in tho 

first stsp of the electrolysis (equation (55)) diffuses toward the 

electrode at which it is reduced according to reaction (56). As a result, 

- 
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the current through the cell is the suss of two components according to 

the formal* 

(*, + %) FD{ 
1) Co (*, f) 

1)x, X.S.O 

which is written in terms of the time t' defined by the relationship 

t - t - *E"t , t being the time elapsed since the beginning of the 

electrolysis (1st step). Equation (57) is the boundary condition for 

the present problem. This condition can be modified by replacing the 

derivative C/OQ   (x,t') / 0 x for x • 0 by its value derived for 

Case II (equation (41)). After a few simple transformations, the 

boundary condition becomes: 

•) CK (*., t'j 
O: }K:0 KZFZR 

/ 

*   7C 

to) I' 

Vi-t 
I -\ 

V,t t' 
Note that equation (58) is written in an expanded form to show the 

similarity between the present boundary condition and that expressed by 

equation (41). Equation (1) as written with the diffusion coefficient 

Dfl instead of Do gives the distribution of substance R, at time T"t t 

and consequently this formula expresses the initial condition for the 

present problem. 

(st) 

\ 
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\ 

. 

DERIVATION OF THE CONCENTRATION C  (O.t'). 
Ra 

The above boundary value problem will be solved by applying the Laplace 

transformation as in Case II. The treatment is similar as that previously 

discussed, and equation (36) holds for this case provided that DD and 

^ I   DR  *• r^P1*0"1 by D
0   «d ^'A/ D  , respectively. 

The integration constant N is again equal to zero, and M is defined by 

satisfying the transform of the boundar7 condition (58), i.e. the con- 

dition 

d <S» (*, 4) 

x.*o •*/, FLo ! 

(%, 17lz) i6 

n^F % Z4 ^Mi%'f 
X 

to) 

After rearranging the terms one finally arrives at the following 

transform of the solution for x = C 

IT     7L. F he.        "d 

*Z F^R,    4 
'     ef($4)ej/£ (?,*) 'A (Co) 

1 
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The inverse transform is performed by applying the convolution as for 

equation (39), and this leads to the solution: 

I 

C^')- *'/**,   e  TV* 

«l * ** _ 'A 
*t -<?.+*) 

,\i (6,) 

Turing* Tm. 
The transition time, obtained by equating to sero the concentration 

C^CCt1), is 

£ = *7 *(-§-; * (-?/ <&) 

For example, when n» and n2 are equal,  the transition time     f2 is equal 

to 3     Ti  J    likewise for   n8 / nt  - 2, one has     Ca /   "fcTi     " *• 

The above treatment was verified experimentally for the stepwise 

reduction of oxygen and uranyl ion.    Data obtained at different current 

densities are listed in Table III, and two examples of potential-time 

curves are shown in Fig. 4.    The average experimental results   f 2 / 2Tt    • 

2.9?    for oxygen and   TC z /   ^T 1  • 7.91    for uranyl ion are in good agree- 

ment with the theoretical values    3  (n2 / n,   - 1)    and    8 (n2 / nt   - 2) 
20 

one computes from equation (62). 

20 
Toe composition of the supporting electrolyte in the reduction of 

uranyl ion was exactly the same as that Kolthoff and Harris (J. Am. Chem. 

•1 

- 

1 
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3q£., 6g, 1175 (1946)) used in one phase of their study of the polarography 

of uranium. This is why thymol was added although it sight not hare been 

needed in the electrolysis at constant current. Note that the above authors 

found n2 / ni » 2J2 from polarographic waves for the conditions listed in 

Table III. This abnormality possibly does not exist in the constant cur- 

rent method, since the ratio  ET a / Ti for n2 / nt - 2.12 is 6.50 

whereas the average experimental value of C*2 / C*>  is 7.91. This 

point, however, cannot be settled here on account of the relatively large 

experimental errors (see Pig. 4). 

DERIVATION OF C. (O.f . 
Ra 

In order to derive the equation for the potential-time curve (see 

below) for the second step it is necessary to know the concentrations 

Cg (0,t') and CR (0,f). The former concentration is given by equation 

(61), and the latter will now be calculated. Substance R2 is produced 

either by reduction of substance 0 or by reduction of substances Rt. 

Hence, the sum of the flams of substances 0 , R, , and R2 at the electrode 

surface is equal to sero. Thus: 

Equation (63) is the boundary condition for the present problem. The 

initial condition on the other hand is: C (x,0) • 0. 
R2 

Equation (63) can be rewritten by combining it with equations  (41) 
t 

and (58)> and ths following boundary condition is obtained in this manner 
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r 
"a fly, (•*. e) 

1*. £»0 %f * *L 

 QMC  £n\ —'-  

*      7C Z. + L' 7 

((*) 

The solution is derived by applying the Laplace transformation as in 

the previous section, the integration constant being determined by satis- 

fying the transform of equation (6i»). After inverse transformation one 

obtains by using the convolution as in the case of equation (47), the 

concentration CD (0,ti). Thus: 

IL. 
(<*) 

POTEHTIAL-TIMK CPRVB. 

In case of electrochemical equilibrium the equation for the potential- 

time curve for the second step of the electrode process (reaction (56)) is 

obtained by introducing in the Nernst equation the concentrations from (61) 

and (65).    The resulting equation can be rewritten by taking into account 

that according to (61) one has: 

*, tnj,    ft> 
ft •i 

= (*, + *) 

'A 
(") 
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Thus; 

'l*>     , u l'£ ^v 7 ^ tvy» 
where the potential (Bi/2)D _D  is defined in the similar fashion as the 

'  K| K2 

potential E| » for the system 0-nt in equation (19)* The time at which 

the potential S is equal to (
E
I/2)R _R   is obtained by equating to unity 

the argument of the logarithm term in (67). After simple transformations 

one obtains 

For example if u\  - n2, one has "£T2 - 3 £"i » and the potential 

t'     is observed at t' - T2 / 4 • T2 / 6 or  5 *T2 / 12. The 

time is one fourth of the transition time in the reduction of a single sub- 

7 
stance in a one-step process . 

EXPERIMENTAL 

The experimental method applied in this investigation was identical 

7 
to that previously reported . The reversal of current in the experiments 

on re-oxidation process was controlled by a D.P.O.T. relay which was 

actuated manually by closing a tap key. Experimental results were dis- 

cussed above. 
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CONCLUSION 

It is possible to develop a rigorous mathematical analysis of potential- 

time curves for the three types of electrode processes discussed in the 

present paper. Rigorous interpretations of potential-time curves can be 

developed for cases for which only approximate treatments are available in 

polarography and/or transitory voltaometry (see Case I and ref.?), and 

consequently the constant current method appears more advantageous than the 

former two methods in electrochemical kinetics. Further work in this direc- 

tion will be discussed in a subsequent paper. 
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APPENDIX - EVALUATION OF THE INTEGRALS I, AND I2 

OF EQUATION (35) 

The integral It is directly obtained from tables. Thus: 

* - ^ cod \ (•£) 
•h 

Ay 
-  / ft) 

The integral I2 is evaluated by successive integrations by parts. In 

the first integration one sets 
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v= ik. "t^f) - ? ic (*7)    (?) 
i 

where a is defined by equation (37). After integration, this leads to a 

third integral 

L* /   CM* 
i/v 

(i;) (*-?)f(*?)n. ¥) 
which is evaluated by setting erfc(a 9?) as    v   and the remaining terms 

as du.    The following fourth integral is obtained in this manner 

V- 
A +(-*f)*l (^) H)\*J 60 

and this integral is calculated by substituting for the hyperbolic sine 

the corresponding exponential functions.  After collecting terms, one 

finally obtains equation (36). 
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TABLE I 

DATA ON THE TRANSITION TIMES FOR VARIOUS RE-OXIDATION PROCESSES 

40 

Thallium Cadmium 
b 

re 
3.30 3.14       3.03 1.44 3.55 2.38 1.36 1.26 

f 1.14 1.06       1.00 0.50 1.26 0.828 0.U2 0.423 

*:/*:' 2.89 2.96       3.03 2.88 2.82 2.88 3.07 2.98 

Zinc Quinone 
d 

re 
2.46 1.67       0.907 0.865 3.00 2.93 1.10 0.884 

r'* 0.75 0.538     0.313 G.282 0.965 0.965 0.345 0.276 

r/r' 3.15 3.10       2.95 3.06 3.11 3.05 3.19 3.20 

10~ M thallium nitrate in 1 M potassium nitrate 

b   —2 
10 M cadmium sulfate in 1 M potassium nitrate 

10 " M sine sulfate in 2 M ammonium hydroxide and 2 M ammonium chloride 

10~3 M quinons in buffer of pH 6.9 and 1 M potassium nitrate 

Transition times in seconds at different current densities 
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TABLE II 

DATA FOR THE ELFCTROLTSIS OF MIXTURES 

OF CADMIUM AND ZINC IONS 

"< 

a 
Solution I Solution 

a 
II 

Current *. *,    <• h **>*- tf ». 2 •/ft • 5>* 
rf 

-3 
10  aap. sec. sec. io"! 

» 
amp.sec '/a 

• sec. sec. io-3 amp. sec • 

1.32 2.70 1.32 0.13 2.*0 1.56 0.58 

1.96 1.28 0.25 0.22 1.17 0.685 0.54 

3.18 0.42 0.0878 0.21 0.42 0.307 0.65 

4.81 0.182 0.0612 0.32 0.202 0.123 0.58 

9.39 0.P50 0.015 

average 

0.30 

0.24 ayerage 0.59 

Solution III * Solution 
a 

IV 

1.32 2.62 2.24 0.77 - - •* 

1.96 1.22 1.07 0.81 1.21 2.54 1.65 

3.18 0.435 0.385 0.78 0.442 0.87 1.54 

4.81 0.178 0.161 0.77 0.19 0.40 1.59 

9.39 0.046 0.0377 0.70 0.0477 0.102 1.59 

arerage 0.77 average 1.59 

* Concentration of cadmium ion: 3 x 10~3 N in all cases. Concentration of sine ion: 

3 x 10"* M (sol.I), 7.5 x 10"* M (sol.II), 10~3 M (sol.Ill), 2 x 1C"3 M (sol.17). 

Supporting electrolyte: 1 M potassium nitrate. 



TABLE III 

DATA FOR THE STEFW1SE REDUCTION OF OXYGEN 

AND URANTL ION 

42 

Oxygen * Uranyl ion 

*, *a *a/C, *, *a *a/*. 

sec. sec. sec. sec. 

1.29 3.84 2.97 0.264 2.14 7.97 

0.716 2.09 2.92 0.139 1.09 7.86 

0.328 1.02 3.11 0.090 0.71 7.89 

0.128 0.368 2.88 - - - 

average 2.97 Average 7.91 

• 

1 M lithium chloride saturated with oxygen at 25* 

b 10"3 N uranly nitrate in 0.1 M potassium chloride and 0.01 M hydrochloric 

acid. Thymol present at a concentration of 2 x 10   per cent. 
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Fig. 1. Variation of the concentration of substance R during the 

re-oxidation process. The number on sach curve is the time t'. 

Fig. 2. Potential-time curves for the reduction - and subsequent 

re-oxidation - of cadmium ion (left) and sine tetrannine ion. 

See data in Table I. Note that one has approximately 

AB - 3 BC (left), and AB - 3 CD (right). 

Flit. 3. Variations of the ratio of the flux of substance 0( at x • 0 

i 
and time t to the flux of this substance at x • 0 and time 

t "0. Abscissas are calculated in terms of the ratio 
1 

t' /*£,. 
I 

Fig, fc.    Potential-time curves for the stepvise reduction of oxygen 

(left) and uranyl ion.    See data in Table III.    Note that 

one has approximately T a • 3 f i   (left) and   *C2 • 8Ti 

fright). 

I 
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